[vc_row][vc_column][vc_column_text]
Objective
Design a robust nonlinear path following control law for a fixed-wing UAV to track a reference path under the wind disturbance
Disturbance Observer
System model for the wind estimator
$$ \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} V_a \cos \psi + W_N \\ V_a \sin \psi + W_E \end{bmatrix}$$
Update law of the disturbance observer
$$ \dot{\hat{\bf{w}}} = -T_w \hat{\bf{w}} + T_w ( \dot{\bf{x}} – \bf{u}) $$
where, \( \hat{\bf{w}} = \begin{bmatrix} \hat W_n & \hat W_e \end{bmatrix}^T \) is the wind velocity estimate in the north and east direction, \( T_w \) is the diagonal observer gain matrix, and \( \bf{u} = \begin{bmatrix} V_a \cos \psi & V_a \sin \psi \end{bmatrix}^T \)
System Model
The error kinematics model becomes,
$$ \begin{align} \dot{e}_t &= V_g \cos (\chi – \chi_r ) – ( 1 – \kappa (s) e_n ) \dot{s} \\ \dot{e}_n &= V_g \sin (\chi – \chi_r ) – \kappa (s) e_t \dot{s} \end{align} $$
Path Following Control Law
Command Filtered Backstepping
Hardware-in-the-loop Tests
Bspline Path Following
Flight Tests
Circular trajectory following
Conclusion
The experimental results show that the improved tracking performance as well as the enhanced robustness, proving the applicability of the proposed algorithm in the various mission of the fixed-wing UAV in wind disturbance environment.
[/vc_column_text][vc_separator][vc_column_text]
Researcher
[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column width=”1/2″][vc_single_image image=”475″][/vc_column][vc_column width=”1/2″][vc_column_text]
김수현(Kim Su Hyeon)
한국항공대학교 스마트항공모빌리티학과 무인시스템제어연구실(KAU USCL)
박사과정
10540 경기도 고양시 덕양구 항공대학로 76 전자관 322호
angelfive92@gmail.com
[/vc_column_text][/vc_column][/vc_row]